340 research outputs found

    Real-time dynamic holographic image storage device

    Get PDF
    A real-time dynamic holographic image storage device uses four-wave mixing in a pair of photorefractive crystals. An oscillation is produced between the crystals which can be maintained indefinitely after the initial object beam is discontinued. The object beam produces an interference pattern in a first crystal to produce phase-conjugated object beam which is directed towards the second crystal. In the second crystal another interference pattern is created which produces a reconstructed object beam. The reconstructed object beam is directed back towards the first crystal. The interference patterns are produced by interaction of the object and phase-conjugated object beam with a read and write beam in each of the crystals. By manipulation of the ratio of the read and write beam intensities in at least one of the crystals, the phase-conjugate or reconstructed object beam output therefrom can be amplified to maintain stable oscillation between the two crystals

    An overview of controls research on the NASA Langley Research Center grid

    Get PDF
    The NASA Langley Research Center has assembled a flexible grid on which control systems research can be accomplished on a two-dimensional structure that has many physically distributed sensors and actuators. The grid is a rectangular planar structure that is suspended by two cables attached to one edge so that out of plane vibrations are normal to gravity. There are six torque wheel actuators mounted to it so that torque is produced in the grid plane. Also, there are six rate gyros mounted to sense angular motion in the grid plane and eight accelerometers that measure linear acceleration normal to the grid plane. All components can be relocated to meet specific control system test requirements. Digital, analog, and hybrid control systems capability is provided in the apparatus. To date, research on this grid has been conducted in the areas of system and parameter identification, model estimation, distributed modal control, hierarchical adaptive control, and advanced redundancy management algorithms. The presentation overviews each technique and presents the most significant results generated for each area

    Analytic redundancy management for SCOLE

    Get PDF
    The objective of this work is to develop a practical sensor analytic redundancy management scheme for flexible spacecraft and to demonstrate it using the SCOLE experimental apparatus. The particular scheme to be used is taken from previous work on the Grid apparatus by Williams and Montgomery

    The spacecraft control laboratory experiment optical attitude measurement system

    Get PDF
    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only

    Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms

    Get PDF
    Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein

    Selected topics in robotics for space exploration

    Get PDF
    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics

    Control of flexible structures with distributed sensing and processing

    Get PDF
    Technology is being developed to process signals from distributed sensors using distributed computations. These distributed sensors provide a new feedback capability for vibration control that has not been exploited. Additionally, the sensors proposed are of an optical and distributed nature and could be employed with known techniques of distributed optical computation (Fourier optics, etc.) to accomplish the control system functions of filtering and regulation in a distributed computer. This paper extends the traditional digital, optimal estimation and control theory to include distributed sensing and processing for this application. The design model assumes a finite number of modes which make it amenable to empirical determination of the design model via familiar modal-test techniques. The sensors are assumed to be distributed, but a finite number of point actuators are used. The design process is illustrated by application to a Euler beam. A simulation of the beam is used to design an optimal vibration control system that uses a distributed deflection sensor and nine linear force actuators. Simulations are also used to study the influence of design and processing errors on the performance

    Simulation of the coupled multi-spacecraft control testbed at the Marshall Space Flight Center

    Get PDF
    The capture and berthing of a controlled spacecraft using a robotic manipulator is an important technology for future space missions and is presently being considered as a backup option for direct docking of the Space Shuttle to the Space Station during assembly missions. The dynamics and control of spacecraft configurations that are manipulator-coupled with each spacecraft having independent attitude control systems is not well understood and NASA is actively involved in both analytic research on this three dimensional control problem for manipulator coupled active spacecraft and experimental research using a two dimensional ground based facility at the Marshall Space Flight Center (MSFC). This paper first describes the MSFC testbed and then describes a two link arm simulator that has been developed to facilitate control theory development and test planning. The motion of the arms and the payload is controlled by motors located at the shoulder, elbow, and wrist

    Optical processing for distributed sensors in control of flexible spacecraft

    Get PDF
    A recent potential of distributed image processing is discussed. Applications in the control of flexible spacecraft are emphasized. Devices are currently being developed at NASA and in universities and industries that allow the real-time processing of holographic images. Within 5 years, it is expected that, in real-time, one may add or subtract holographic images at optical accuracy. Images are stored and processed in crystal mediums. The accuracy of their storage and processing is dictated by the grating level of laser holograms. It is far greater than that achievable using current analog-to-digital, pixel oriented, image digitizing and computing techniques. Processors using image processing algebra can conceptually be designed to mechanize Fourier transforms, least square lattice filters, and other complex control system operations. Thus, actuator command inputs derived from complex control laws involving distributed holographic images can be generated by such an image processor. Plans are revealed for the development of a Conjugate Optics Processor for control of a flexible object

    Lumped mass modelling for the dynamic analysis of aircraft structures

    Get PDF
    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems
    corecore